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EXECUTIVE SUMMARY

The Department of Energy’s Office of Fuel Cycle Technologies (FCT) in the Office of Nuclear Energy
(DOE-NE) has conducted a technical review and assessment of the total current inventory

[~70,150 MTHM (metric ton of heavy metal) as of 2011] of domestic discharged used nuclear fuel (UNF)
and estimated that up to ~1700 MTHM of existing commercial UNF should be considered for retention to
support research, development, and demonstration (RD&D) needs and national security interests. The
70,150 MTHM includes commercial (~67,600 MTHM), highly enriched uranium (HEU) (~50 MTHM),
and DOE-owned (~2500 MTHM) UNF. The remainder, ~68,450 MTHM (both DOE-owned and
commercial UNF) or ~98% of the total current inventory by mass, can proceed to permanent disposal
without the need to ensure retrievability for reuse or research purposes. The assumptions used for this
assessment are consistent with the DOE-NE R&D Roadmap; " specifically, the time to complete the
needed RD&D places commercial reprocessing availability no sooner than the 2030 time frame. This
assessment does not assume any decision about future fuel cycle options or preclude any potential
options, including those with potential recycling of commercial UNF, since the ~2000 MTHM that is
generated annually could provide the feedstock needed for deployment of alternative fuel cycles; for
example, by 2030 an additional ~40,000 MTHM of commercial UNF will have been generated.

The technical assessment considered discharged UNF from commercial nuclear electricity generation and
defense and research programs and divided the current (as of 2011) UNF inventory into the following
three categories:

1. Disposal — excess material that is not needed for other purposes;

2. Research — material needed for RD&D purposes to support waste management (e.g., UNF
storage, transportation, and disposal) and development of alternative fuel cycles (e.g., separations
and advanced fuels); and

3. Recycle/Recovery — material with inherent and/or strategic value.

As a result of consideration of RD&D needs within the DOE-NE programs, time frames in which recycle
fuel cycles could be deployed, projections for electricity and nuclear growth, and possible uses to support
national security interests, it is proposed that the vast majority of the total UNF inventory should be
placed in the first category and permanently disposed, without the need to make fuel retrievable from
disposal for reuse or research purposes. It is proposed that material in the latter two categories should be
retained to support ongoing and planned RD&D needs and national security interests. The amount of
material designated for retention includes a sufficient margin to provide assurance that future
retrievability from disposal will not be necessary for reuse or research purposes.

Key tenets and assumptions used in this technical assessment include the following.

1. Access to some amount of UNF is needed to support RD&D for the DOE-NE FCT program
objectives related to UNF management and alternative fuel cycles.

2. The two principal options for addressing UNF management are geologic disposal and recycling.

3. U.S. nuclear power plants will continue to discharge ~2000 MTHM annually for the next couple
of decades; projections beyond the next couple of decades are less certain.

*Nuclear Energy Research and Development Roadmap, Report to Congress, U.S. Department of Energy, Office of Nuclear
Energy, Washington, DC, April 2010, http://www.ne.doe.gov/pdfFiles/NuclearEnergy Roadmap_Final.pdf.
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4. The option of recycling commercial UNF at a future date is maintained, pending a decision.

5. Although fuel recycling depends on future decisions, it is assumed that industrial-scale (100s to
1000s of MTHM/y) recycling of commercial UNF is unlikely to begin for at least 20 years (2030
time frame), at which time an additional ~40,000 MTHM of UNF will have been discharged.

6. Recycling in any potential future alternative fuel cycle would likely be designed and optimized
for the material needs of the associated reactor fleet based on the current and projected UNF
discharges and inventory at that time, rather than UNF feedstock that is no longer being
produced.

7. The time frame for the development of alternative fuel cycles is assumed to be consistent with the
schedule in the DOE-NE R&D Roadmap.

8. It is assumed that the transportation and placement of the current UNF inventory in disposal is
unlikely to begin for at least 10 years and will take several decades.”

The current inventory of domestic UNF is massive, diverse, dispersed, and increasing. Approximately
67,600 MTHM of commercial UNF, representing a total of ~23 billion curies of long-lived radioactivity,”
~2500 MTHM of DOE-owned UNF, and ~50 MTHM of HEU UNF are currently stored at 79 sites in 34
states. The commercial UNF inventory is currently increasing annually by ~2000 MTHM* and will
increase at a greater rate in the future if nuclear power generation increases. Reactor and fuel designs, as
well as reactor operating conditions, have evolved in the United States since the first commercial
development of nuclear power, resulting in considerable variation in the characteristics (e.g., fuel
assembly and cladding materials, initial enrichment, discharge burnup, and irradiation exposure
conditions) of the current UNF inventory. These variations may raise issues with aspects of nuclear fuel
management, for example, demonstrating compliance with storage, transportation, and disposal regulatory
criteria for all the variations present in the current UNF inventory.

The technical assessment of the domestic UNF inventory included a set of attributes relative to permanent
geologic disposal, UNF research needs, deployment of alternative fuel cycles, and national security
materials strategy and then used the attributes to categorize the current UNF inventory. Attributes
considered include isotopic compositions (e.g., fissile and non-fissile content), physical and material
characteristics that impact recycling and/or disposal facility design and operations (e.g., accessibility of
material, diversity of material, condition of material, and material hazards), national security materials
strategy, and current and projected RD&D needs to support UNF management and alternative fuel cycle
development. Consideration was given to the fact that since the United States is generating

~2000 MTHM annually, disposal of the majority of the current commercial UNF does not preclude the
option of recycling commercial UNF at a future date. For example, assuming the current discharge rate
remains constant, if the United States built and began operation of an industrial-scale reprocessing facility
with annual capacity of up to 2000 MTHM by 2030 that used 5-year-cooled fuel, a portion of the
discharged UNF would not need to be retained to support this facility until 2025.

*Spent Nuclear Fuel: Accumulating Quantities at Commercial Reactors Present Storage and Other Challenges,
GAO-12-797, U.S. Government Accountability Office, August 2012.

’I. T. Carter, A. J. Luptak, and J. Gastelum, Fuel Cycle Potential Waste Inventory for Disposition, FCR&D-USED-2010-
000031 REV 5, U.S. Department of Energy, July 2012.

‘Effects of a Termination of the Yucca Mountain Repository Program and Lessons Learned, GAO-11-229, U.S. Government
Accountability Office, April 2011.
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An example projection of the identified
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recycling strategy implemented by 2030. Time (y)
Note that UNF is systematically retained
for RD&D purposes prior to 2025, after
which the UNF is retained principally for
recycling. This example is just one possible scenario and is only provided to illustrate the point that
disposal of the current UNF inventory will not adversely impact deployment of an alternative fuel cycle in
the future, even for a recycle fuel cycle.

Figure ES-1. Categorization of UNF assuming current
discharge rate and recycling beginning in 2030.

Based on the technical assessment, ~68,450 MTHM or ~98% of the total current inventory by mass, can
proceed to permanent disposal without the need to ensure retrievability for reuse or research purposes.

Execution of the DOE-NE’s Office of FCT mission” requires immediate and continued access to select
UNF material for research purposes. Access to this material is needed to support the development of the
safety basis for extended storage of commercial UNF and transportation following extended storage
periods (e.g., commercial UNF with varying cladding materials and exposure conditions may be needed
to address long term fuel integrity) and disposal (e.g., a range of uranium oxide fuel may be needed to
demonstrate how UNF degrades in various environments). Additionally, access to material is needed for
RD&D to support development of potential future alternative fuel cycles. As recommended by the Blue
Ribbon Commission on America’s Nuclear Future, fuel cycle R&D activities are critical to maintaining
“Active U.S. leadership in international efforts to address safety, waste management, non-proliferation,
and security concerns.”

HEU UNF may be useful to support national security missions and represents a small fraction of the
current UNF inventory (up to ~50 MTHM). This material represents U.S.-origin enriched uranium that is
not subject to international consent agreements. For example, it could be used to offset the need for a
dedicated enrichment plant to support national security missions. Given the special nature of this
material, it is recommended that a study be conducted to evaluate the benefits of recovering this material.

In conclusion, an assessment of the UNF inventory and the RD&D needs has estimated that access to
~1700 MTHM of the existing commercial UNF inventory should be retained to support the DOE-NE
FCT mission. The quantity was determined based on projected RD&D needs and practical considerations
for access to a sufficient quantity of representative samples of the diverse commercial UNF inventory to

“to develop used nuclear fuel management strategies and technologies to support meeting federal government responsibility
to manage and dispose of the nation’s commercial used nuclear fuel and high-level waste; develop sustainable fuel cycle
technologies and options that improve resource utilization and energy generation, and reduce waste generation, enhance safety,
and limit proliferation risk.”

"Blue Ribbon Commission on America’s Nuclear Future, Report to the Secretary of Energy, January 2012,

http://bre.gov/sites/default/files/documents/bre_finalreport_jan2012.pdf.

xiii


http://brc.gov/sites/default/files/documents/brc_finalreport_jan2012.pdf

support UNF storage, transportation, and disposal; access to high-burnup UNF representative of future
discharges in quantities sufficient to support fuel cycle technology development; and a sufficient margin
to provide assurance that future retrievability from disposal will not be necessary. The main conclusion
of this assessment is not the specific amounts or specific assemblies for retention and disposal but rather
that access to some small fraction of the existing UNF should be retained, while the remainder can
proceed to disposal without the need to ensure retrievability for reuse or research purposes. Because a
repository is not anticipated to be available for more than a decade, time is available to refine, if needed,
the specific amounts and select specific assemblies as the RD&D programs proceed and the associated
UNF material needs are better defined.

Finally, note that categorization of UNF for disposal does not require a determination that it has no value.
In principle, all irradiated fuel has some potential value as an energy source. The determination instead
supports a comprehensive national fuel cycle strategy.
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1. INTRODUCTION

This report documents a technical review and assessment of the current inventory of domestic discharged
used nuclear fuel (UNF) in support of a comprehensive national nuclear fuel cycle strategy. The
objective of the review and assessment is to determine if the domestic UNF inventory can be separated
into different, distinguishable categories relative to disposition options and, if so, to quantitatively
differentiate the UNF inventory relative to the defined categories. This assessment is consistent with the
Department of Energy Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies (FCT) Office
mission,' “to develop used nuclear fuel management strategies and technologies to support meeting
federal government responsibility to manage and dispose of the nation’s commercial used nuclear fuel
and high-level waste; develop sustainable fuel cycle technologies and options that improve resource
utilization and energy generation, and reduce waste generation, enhance safety, and limit proliferation
risk,” and is motivated by the recognition that characterization and categorization of the domestic UNF
inventory can inform decisions relative to domestic disposition options and UNF management. For
example, if a certain fraction of the UNF inventory is determined to be excess material that is not needed
for other purposes, that information can clarify needs for geologic disposal, such as capacity and
retrievability, as well as impact how and where that material is handled and stored in the future.
Alternatively, if a certain fraction is determined to be useful for recycling, that knowledge can clarify
needs for future reprocessing facilities, such as capacity and other facility characteristics, as well as how
and where the UNF is handled and stored, including the importance of assembly integrity and
retrievability. The scope of this assessment includes the current (as of 2011) inventory of discharged
UNF from commercial nuclear electricity generation and defense and research programs.

The current inventory of domestic UNF is massive, diverse, dispersed, and increasing. Although the UNF
inventory has been and continues to be managed safely, it represents a significant financial liability. The
two principal options for addressing UNF management are geologic disposal and recycling, which also
requires geologic disposal for resulting high-level waste. Given the current mass [~70,150 MTHM
(metric ton of heavy metal)] and diversity of the domestic UNF inventory and the fact that U.S. nuclear
power plants are discharging ~2000 MTHM annually, it is difficult to conceive a realistic or financially
viable alternative nuclear fuel cycle in which the current inventory would need to be retained for reuse.
On the other hand, geologic disposal of the entire current inventory would reduce and potentially
eliminate access to UNF that may be needed to support UNF management and alternative fuel cycle
research, development, and demonstration (RD&D). Therefore, the focus of this assessment is on the
determination of the characteristics and amounts of UNF that should be retained for potential future use
and those that should be designated for disposal.

The assessment approach includes the following:
1. Collection and analysis of current and projected UNF inventory data;

2. Assessment of the UNF inventory relative to retention needs for RD&D, potential future recycle,
and recovery for national security interests;

3. Determination of appropriate categories and criteria for categorizing the UNF inventory; and
4. Categorization of the UNF inventory relative to the identified categories.
Key tenets and assumptions include the following.

1. Access to some amount of UNF is needed to support RD&D for the DOE-NE FCT program
objectives related to UNF management and alternative fuel cycles.



2. The two principal options for addressing UNF management are geologic disposal and recycling.

3. U.S. nuclear power plants will continue to discharge ~2000 MTHM annually for the next couple
of decades; projections beyond the next couple of decades are less certain.

4. The option of recycling commercial UNF at a future date is maintained, pending a decision.

5. Although fuel recycling depends on future decisions, it is assumed that industrial-scale (100s to
1000s of MTHM/y) recycling of commercial UNF is unlikely to begin for at least 20 years (2030
time frame), at which time an additional ~40,000 MTHM of UNF will have been discharged.

6. Recycling in any potential future alternative fuel cycle would likely be designed and optimized
for the material needs of the associated reactor fleet based on the current and projected UNF
discharges and inventory at that time, rather than UNF feedstock that is no longer being
produced.

7. The time frame for the development of alternative fuel cycles is assumed to be consistent with the
schedule in the DOE-NE R&D Roadmap.

8. It is assumed that the transportation and placement of the current UNF inventory in disposal is
unlikely to begin for at least 10 years and will take several decades.

This report is organized as follows. Relevant background information is provided in Section 1.1. An
overview of the domestic UNF inventory is presented in Section 2. Section 3 provides an assessment of
the UNF relative to retention needs. Section 4 defines the categories and criteria used for categorizing the
UNF inventory. Section 5 presents the results of the categorization. Conclusions and suggestions for
future work are described in Sections 6 and 7, respectively.

1.1 BACKGROUND

In 2010, the DOE-NE developed a research and development (R&D) roadmap2 to ensure nuclear energy
remains a viable energy option for the United States. The DOE-NE Roadmap identified the following
key challenges to the increased use of nuclear energy.

e “The capital cost of new large plants is high and can challenge the ability of electric utilities to
deploy new nuclear power plants.

e The exemplary safety performance of the U.S. nuclear industry over the past thirty years must be
maintained by an expanding reactor fleet.

e There is currently no integrated and permanent solution to high-level nuclear waste management.

e International expansion of the use of nuclear energy raises concerns about the proliferation of
nuclear weapons stemming from potential access to special nuclear materials and technologies.”

To address the challenges to expanding the use of nuclear energy, the DOE-NE Roadmap organized the
R&D activities along the following four main R&D objectives.

1. Develop technologies and other solutions that can improve the reliability, sustain the safety, and
extend the life of current reactors.

2. Develop improvements in the affordability of new reactors to enable nuclear energy to help meet
the Administration’s energy security and climate change goals.

3. Develop sustainable nuclear fuel cycles.

4. Understand and minimize the risks of nuclear proliferation and terrorism.

As described in the DOE-NE Roadmap, sustainable fuel cycle options are those that improve uranium
resource utilization, maximize energy generation, minimize waste generation, improve safety, and limit



proliferation risk. The key challenge identified in the DOE-NE Roadmap is to develop a suite of options
that will enable future decision makers to make informed choices about how best to manage the used fuel
from reactors. Hence, according to the DOE-NE Roadmap, DOE will conduct R&D in this area to
investigate the technical challenges involved with the following three potential strategies for used fuel
management.

e “Once-Through — Nuclear fuel makes a single pass through a reactor after which the used fuel is
removed, stored for some period of time, and then directly disposed in a geologic repository for
long-term isolation from the environment. The used fuel will not undergo any sort of treatment to
alter the waste form prior to disposal in this approach, eliminating the need for separations
technologies that may pose proliferation concerns. Less than one percent of the mined uranium is
utilized in the present once-through fuel cycle.

o Modified Open Cycle — The goal of this approach is to develop fuel for use in reactors that can
increase utilization of the fuel resource and reduce the quantity of actinides that would be
disposed in used fuel. This strategy is “modified” in that some limited separations and fuel
processing technologies are applied to the used LWR fuel to create fuels that enable the
extraction of much more energy from the same mass of material and accomplish waste
management goals.

e Full Recycle — In a full recycle strategy, all of the actinides important for waste management are
recycled in thermal- or fast-spectrum systems to reduce the radiotoxicity of the waste placed in a
geologic repository while more fully utilizing uranium resources. In a full recycle system, only
those elements that are considered to be waste (primarily the fission products) are intended for
disposal, not used fuel. Implementing this system will require extensive use of separation
technologies and the likely deployment of new reactors or other systems capable of transmuting
actinides.”

The R&D to support future decisions is to be conducted during the next few decades to support the FCT
Program Vision:' “By mid-century, strategies and technologies for the safe long-term management and
eventual disposal of U.S. commercial UNF and any associated nuclear wastes have been fully
implemented.” The technical assessment described in this report is part of the FCT R&D program and is
intended to support near-term and future decisions regarding fuel cycle strategies and R&D needs.
Between now and mid-century, ~40 years of additional discharged commercial UNF could be
accumulated, which, based on the current annual discharge rate,” could be as much as 80,000 MTHM of
additional UNF. While in theory all 80+ years of UNF could be recycled, the practicalities, cost, and
potential benefits of doing so must be properly considered. Therefore, the UNF inventory is assessed in
this report to determine the type and quantity of UNF that may be needed to support the DOE-NE
research objectives, including maintaining the fuel cycle strategy options described above. The focus of
this assessment is on the determination of the characteristics and amounts of UNF that should be retained
for potential future use and those that should be designated for permanent disposal.

"It is recognized that the annual discharge rate may vary considerably over the next 40 years.






2. OVERVIEW OF THE DOMESTIC USED NUCLEAR FUEL INVENTORY

The current (as of 2011) domestic UNF inventory includes UNF from commercial nuclear electricity
generation and defense and research programs stored at 79 sites in 34 states. The diversity of UNF types,
characteristics, storage locations, and storage conditions presents a variety of challenges to the safety,
security, and cost of UNF management. The current mass of fuel in each of the categories is shown in
Figure 1. The inventory of discharged commercial UNF is currently ~67,600 MTHM? and is increasing
by ~2000 MTHM annually.* The inventory of DOE-owned UNF is currently ~2500 MTHM and is not
increasing at an appreciable annual rate. The inventory of HEU is currently ~50 MTHM. Additional
details on these UNF inventory constituents are provided in the following subsections.

DOE-Owned

(3.57%) HEU
2500 (0.07%)
MTHM ~50 MTHM

Figure 1. Mass of UNF inventory constituents as of 2011
(HEU portion too small to be visible). Source: Ref. 3.

2.1 COMMERCIAL USED NUCLEAR FUEL

Approximately 67,600 MTHM of commercial UNF, representing a total of ~23 billion curies of long-
lived radioactivity,” are currently stored at 75 sites in 33 states.! The commercial UNF inventory is
currently increasing annually by ~2,000 MTHM* and will increase at a greater rate in the future if the
number of operating nuclear reactors increases. Commercial UNF discharge data, on an assembly basis,
were collected and published5 by the Energy Information Administration for the Office of Civilian



Radioactive Waste Management through 2002. Although limited to discharges through 2002, these data
represent the most detailed available information on the commercially discharged UNF inventory. More
recently, data have been assembled from a variety of sources by the DOE-NE Used Fuel Disposition
Campaign (UFDC) to develop an inventory estimate through 2011.° Data from both of these sources
were used in this assessment.

Commercial nuclear power plants have been operating in the United States since 1957, and there are
currently 104 operating nuclear power plants. Used nuclear fuel from these plants is stored on-site in
spent fuel pools and in dry storage casks, complicating the cost and issues associated with UNF
management. Dry storage facilities, referred to as independent spent fuel storage installations (ISFSI), are
in operation at the majority of reactor sites, including 10 sites in 9 states that no longer have operating
reactors. Figure 2 shows the location of operating and shutdown commercial reactor sites. Commercial
UNF includes irradiated fuel discharged from pressurized water reactors (PWRs) and boiling water
reactors (BWRs). In 2011, ~74% of the total mass of commercial UNF was stored in spent fuel pools,
and the remaining 26% was in dry cask storage.6 However, these proportions will slowly change®’ as
most spent fuel pools are at or near their capacity. The distribution of the current UNF inventory from
PWRs and BWRs in wet (pool) and dry storage is illustrated in Figure 3.
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Figure 2. Operating and shutdown commercial reactor sites.

"Note that the UNF from the first commercial nuclear power plant, the Shippingport Atomic Power Station, is
now classified as DOE-owned fuel.
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Figure 3. Distribution of current (2011) commercial UNF
inventory from PWRs and BWRs in wet and dry storage (data
from Refs. 3, 5, 6, and 8).

The fuel used in commercial nuclear power reactors consists of uranium dioxide pellets encased in
zirconium alloy (Zircaloy) tubes for the majority of the fuel and in stainless steel tubes for a much smaller
fraction. The fuel assemblies vary in physical configuration, depending on reactor type and manufacturer,
and have evolved in the United States over the past several decades. BWRs have used fuel assemblies
arranged in 6x6, 7x7, 8x8, 9x9, 10x10, and 11x11 arrays of fuel pins, as well as some nonsymmetric
configurations and a range of lattice variations, such as water holes and part-length rods. PWRs have
used fuel assemblies arranged in 14x14, 1515, 16x16 and 17x17 arrays of fuel pins. The distributions of
assembly lattice sizes and fuel vendors for the current inventory of discharged UNF are shown in

Figures 4 and 5, respectively. The different reactor types and evolution in fuel assembly designs and
reactor operating conditions have resulted in considerable variation in the characteristics (e.g., assembly
and cladding materials, initial enrichment, discharge burnup, burnable poison types, and irradiation
exposure conditions) of the current UNF inventory. The variation is evident in the fact that commercial
UNF assemblies have been categorized® by physical configuration into 22 classes: 16 PWR and 6 BWR
fuel assembly classes. In Appendix A, Tables A-1 and A-2 present the assembly class, array size, fuel
manufacturer, assembly version, assembly type code, length, width, and cladding material of commercial
PWR UNF and commercial BWR UNF, respectively. Within an assembly class, assembly types are of a
similar size. There are 137 individual fuel assembly types in these 22 classes. Table A-3 presents the
number of assemblies, initial uranium load, enrichment, burnup, and cooling time characteristics of the
commercial PWR and BWR UNF assembly types, respectively. Tables A-4 and A-5 provide summaries
of UNF characteristics from samples, PWR fuel assemblies, and BWR fuel assemblies. The significant
variation in the current inventory is illustrated in Figure 6 , which shows the distribution of the 22
assembly classes, and Figure 7 and Figure 8, which show the distribution of the fuel assembly types for
PWRs and BWRs, respectively. Although Figure 7 and Figure 8 are somewhat difficult to decipher, they



illustrate the extent of the variation in assembly types within the domestic commercial discharged UNF
inventory. These variations raise issues with aspects of commercial UNF management (e.g.,
demonstrating compliance with storage, transportation, and disposal regulatory criteria for all the
variations present in the current UNF inventory) and the viability of recycling (e.g., designing and

operating a recycling facility and associated processes that can accommodate such wide variations in
feedstock).

PWR lattice sizes BWR lattice sizes
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Figure 4. Distribution (through 2002) of assembly lattice sizes by mass (units are percentage of total
MTHM) in the commercial UNF inventory. Source: Ref. 5.

PWR fuel vendors BWR fuel vendors
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Figure S. Distribution (through 2002) of fuel vendors by mass (units are percentage of total MTHM) in
the commercial UNF inventory. Source: Ref. 5.
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Figure 6. Distribution of assembly classes by total mass in the commercial UNF
inventory as of 2002. Source: Ref. 5.
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